ESTD. 2010

Crossian Resonance

A Multidisciplinary Research Journal (A refereed Biannual Published in June and December)

Vol. 12 No. 1 June 2021

HOLY CROSS COLLEGE (Autonomous) Centre for Multidisciplinary Research Nagercoil

TAMIL NADU, INDIA

ISSN 0976-5417

A Crossian Publication

ESTD. 2010

Crossian Resonance

A Multidisciplinary Research Journal

(A refereed Biannual Published in June and December)

ISSN 0976-5417

Vol. 12 No. 1 June 2021

HOLY CROSS COLLEGE (Autonomous) Centre for Multidisciplinary Research Nagercoil

TAMIL NADU, INDIA

CONTENTS

Games- A Cognitive Walk-through V.Virgin Nithya Veena and Merlin Medow Xavier	1
Contributions of Vivekananda Ashramam in Vellimalai – A study Regi, S. and G. Pushparaj	4
A Study on Liberal Grants to the Temples in Kalkulam and Vilavancode Taluks of Kanyakumari District As Revealed Through the Inscriptions C.R. Siva Kala	8
A Socio - Economic Conditions of the Natural Rubber Tappers in Kerala State V.S Sreeshna	12
Journey from Barter System to Digital Payments System A. Martina Franciska and S. Sahayaselvi	19
A Study on Consumer Preference towards E-Wallets S. Melfia and C. K. Sunitha	25
Perfect Mean Cordial Labeling of Corona Graphs A. Annie Lydia and M. K. Angel Jebitha	31
k-super cube roof cube mean labeling of some graphs V. Princy Kala	38
Super stolarsky-3 mean labeling of some special graphs S. Kavitha	45
Prime ideal of N- group C. Jenila and P. Dheena	53
Structural, Dielectric and Spectroscopic Analysis of L-Glycinium Oxalate Single Crystal for Optoelectronic Applications P.Sahaya Deebika, M. Abila Jeba Queen and P. Aji Udhaya	57
Review on Carbon Nanofiller Embedded Epoxy Composites Juhi Leela Ajith, K. Kavija, M. Shanmugapriya, F. Shanolija, S. Virgin Jeba, S. Sebastiammal and A. Lesly Fathima	65
Comparison of Conductance of Nano Chitosan and Iron Oxide Doped Chitosan Nanocomposites L. Deva Vijila1, G. Leema Rose, S. Aavila Thanga Bhoosan and Y. Jeya Vinse Ruban	72
Augmentation of Oral Bioavailability of Stigmasterol on Inclusion with α-Cyclodextrin K. Francy, S. Lizy Roselet and J. Prema Kumari	81

Prime ideal of N-group

C. Jenila ¹ and P. Dheena ²

¹ Department of Mathematics, Holy Cross College (Autonomous),

Nagercoil - 629 004, India.

e_mail: jenilac201@gmail.com

² Department of Mathematics, Annamalai University,

Annamalainagar - 608 002, India.

e_mail: dheenap@yahoo.com

Abstract

In this paper we introduce the notion of prime ideal of an N-group Γ . We obtain some results for a prime ideal of an N-group Γ . Also we show that if Q is a completely prime ideal of N and S is a complement of Q in N then $M = \{\frac{q}{s} | q \in Q \text{ and } s \notin Q\}$ is a unique maximal ideal in a near-ring of right quotients of N with respect to S.

Key words: prime ideal, maximal ideal, N-group.

2010 Mathematics Subject Classification: 16Y30, 16Y60.

1 Introduction

Throughout this paper N denotes a zero-symmetric near-ring with identity and Γ denotes an N-group. If N has a unit element 1, and if $1.\gamma = \gamma$ for every element $\gamma \in \Gamma$, then Γ is called a unital N-group. In this paper, we assume that all N-groups are unital. So far only ideal is defined in a N-group Γ . In this paper we introduce the notion of prime ideal of an N-group Γ . We obtain some results for a prime ideal of an N-group Γ and maximal ideal of right quotients.

2 Preliminaries

In this section, we recall the definitions needed for our purpose.

Definition 2.1 An ideal P of N is called completely prime if for any $a, b \in N$, $ab \in P$ implies either $a \in P$ or $b \in P$.

Definition 2.2 An ideal Q of N is called completely semiprime if for any $a \in N$, $a^2 \in Q$ implies $a \in Q$.

Remark 2.3

- 1. If P is a completely prime ideal of N, then P is a prime ideal of N.
- 2. If Q is a completely semiprime ideal of N, then Q is a semiprime ideal of N.

Lemma 2.4 Let I be a completely semiprime ideal of N. Then for any $a, b \in N$, $ab \in I$ implies $ba \in I$ and $aNb \subseteq I$.

Proof. Assume that $ab \in I$ for any $a, b \in N$. Now $(ba)^2 = b(ab)a \in I$. Since I is completely semiprime, we have $ba \in I$. Let $n \in N$. Now $(anb)^2 = an(ba)nb \in I$. Since I is completely semiprime, $anb \in I$. Hence $aNb \subseteq I$.

3 Main Results

In this section, we obtain some results for a prime ideal of an N-group Γ and maximal ideal of right quotients.

Definition 3.1 An ideal P of Γ is said to be prime if $P \neq \Gamma$ and whenever $n\gamma \in P$ (where $n \in N$ and $\gamma \in \Gamma$) then $n \in (P : \Gamma)$ or $\gamma \in P$.

If P is prime, then the ideal $p = (P : \Gamma)$ is a prime ideal of N, and P is said to be p-prime.

Lemma 3.2 If P is a prime ideal of Γ , then $(P : \Gamma)$ is a completely semiprime ideal of N.

Proof. Assume that P is a prime ideal of Γ . Suppose that $a \in N$ such that $a^2 \in (P : \Gamma)$. Let $\gamma \in \Gamma$. Then $a(a\gamma) \in P$. Since P is a prime ideal of Γ , we have $a \in (P : \Gamma)$ or $a\gamma \in P$ for all $\gamma \in \Gamma$. Thus, in any case, $a \in (P : \Gamma)$. Hence $(P : \Gamma)$ is a completely semiprime ideal of N.

Lemma 3.3 If P is a prime ideal of Γ , then $(P : \Gamma)$ is a completely prime ideal of N.

Proof. Assume that P is a prime ideal of Γ . Let $a, b \in N$ such that $ab \in (P : \Gamma)$. By Lemma 3.2, $(P : \Gamma)$ is a completely semiprime ideal of N. Then $\langle a \rangle \langle b \rangle \subseteq (P : \Gamma)$. Since $(P : \Gamma)$ is a prime ideal of N, we have $a \in (P : \Gamma)$ or $b \in (P : \Gamma)$. Hence $(P : \Gamma)$ is a completely prime ideal of N.

Hereafter we assume that every N-subgroup is an ideal and $n(\gamma_1 + \gamma_2) = n\gamma_1 + n\gamma_2$ for all $n \in \mathbb{N}, \ \gamma_1, \gamma_2 \in \Gamma$.

Theorem 3.4 Let N be a near-ring and I an ideal which is contained in every maximal ideal. Then for any $i \in I$, 1+i and i+1 have left inverses.

Proof. Let M be a maximal ideal of N. Let $i \in I$. Suppose $N(1+i) \subseteq M$. Since $1+i \in N(1+i)$, we have $1+i \in M$. Since $-i \in M$, we have $1 \in M$, a contradiction. Hence N(1+i) = N. Since $1 \in N(1+i)$, we can find $x \in N$ such that 1 = x(1+i). Similarly i+1 has left inverse.

We have the following corollary from Theorem 3.4.

Corollary 3.5 [2] Let R be a commutative ring and I an ideal which is contained in every maximal ideal. Then for any $i \in I$, 1+i is a unit.

Theorem 3.6 Let N be a near-ring and I an ideal which is contained in every maximal ideal. Let Γ be a finitely generated N-group. Suppose that $I\Gamma = \Gamma$, then $\Gamma = 0$.

Proof. We use induction on the number of generators. Let γ_1 be the generator. Since $I\Gamma = \Gamma$, there exists $i \in I$ and $\gamma \in \Gamma$ such that $\gamma_1 = i\gamma$. Since γ_1 is the generator, we can find $n \in N$ such that $\gamma = n\gamma_1$. Now $\gamma_1 = in\gamma_1$. Then $(1 + (-in))\gamma_1 = 0$. By Theorem 3.4, there exists $x \in N$ such that x(1 + (-in)) = 1. Therefore, $\gamma_1 = 0$. Assume that the result is true for n-1 generators. Let $\gamma_1, \gamma_2, ..., \gamma_n$ be the generators. Since $I\Gamma = \Gamma$, there exists $i \in I$ and $\gamma \in \Gamma$ such that $\gamma_1 = i\gamma$. Since $\gamma_1, \gamma_2, ..., \gamma_n$ are the generators, we can find $a_1, a_2, ..., a_n \in N$ such that $\gamma = a_1\gamma_1 + a_2\gamma_2 + ... + a_n\gamma_n$. Now $\gamma_1 = ia_1\gamma_1 + ia_2\gamma_2 + ... + ia_n\gamma_n$. Thus, $(-ia_1 + 1)\gamma_1 = ia_2\gamma_2 + ... + ia_n\gamma_n$. By Theorem 3.4, there exists $x \in N$ such that $x(-ia_1 + 1) = 1$. Hence $\Gamma = 0$.

Notation 3.7 Let S be a subsemigroup of (N, .). A near-ring of right quotients of N with respect to S is denoted by N_S .

Lemma 3.8 Let N be a near-ring and Q a completely prime ideal of N. Let S be the complement of Q in N. Then $M = \{\frac{q}{s} | q \in Q \text{ and } s \notin Q\}$ is a unique maximal ideal in a near-ring of right quotients of N with respect to S.

Proof. Let $\frac{q_1}{s_1}, \frac{q_2}{s_2} \in M$. Now $\frac{q_1}{s_1} - \frac{q_2}{s_2} = \frac{q_1 s_3 - q_2 n_3}{s_1 s_3} \in M$ where $n_3 \in N, s_3 \in S$ fulfills $s_2 n_3 = s_1 s_3 \in S$. Let $\frac{n}{s} \in N_S$ and $\frac{q}{s'} \in M$. Now $\frac{n}{s} + \frac{q}{s'} - \frac{n}{s} = \frac{n s_1 + q n_1}{s s_1} - \frac{n}{s}$ where $n_1 \in N, s_1 \in S$ is such that $s' n_1 = s s_1 \in S$. Then $\frac{n}{s} + \frac{q}{s'} - \frac{n}{s} = \frac{(n s_1 + q n_1) s_2 - n n_2}{s s_1 s_2}$ where $n_2 \in N, s_2 \in S$ satisfies $s n_2 = s s_1 s_2 \in S$. Thus, $\frac{n}{s} + \frac{q}{s'} - \frac{n}{s} = \frac{n s_1 s_2 + q n_1 s_2 - n s_1 s_2}{s s_1 s_2} \in M$. Let $\frac{n}{s} \in N_S$ and $\frac{q}{s_1} \in M$. Now $\frac{q}{s_1} \frac{n}{s} = \frac{q n_2}{s s_2} \in M$ where $n_2 \in N, s_2 \in S$ with $q s_2 = n s_2 \in S$. Let $\frac{n'}{s'}, \frac{n''}{s''} \in N_S$ and $\frac{q}{s} \in M$. Now $\frac{n'}{s'}(\frac{n''}{s''} + \frac{q}{s}) - (\frac{n'}{s'}\frac{n''}{s''}) = \frac{n'}{s'}(\frac{n'' s_1 + q n_1}{s'' s_1}) - (\frac{n'}{s'}\frac{n''}{s''})$ where $n_1 \in N, s_1 \in S$ satisfies $s n_1 = s'' s_1 \in S$. Then $\frac{n'}{s'}(\frac{n''}{s''} + \frac{q}{s}) - (\frac{n'}{s'}\frac{n''}{s''}) = \frac{n'}{s'}(\frac{n'' s_1 + q n_1}{s'' s_1}) - (\frac{n'}{s'}\frac{n''}{s''}) = \frac{n'}{s''}(\frac{n''}{s'' s_2})$ where $q' \in Q, s_2 \in S$ is such that $n' s_2 = n'' s_2 \in S$. Hence $\frac{n'}{s'}(\frac{n''}{s''} + \frac{q}{s}) - (\frac{n'}{s'}\frac{n''}{s''}) = \frac{n'}{s''}\frac{n''}{s''} = \frac{n'}{s'' s_1} - \frac{n'}{s'' s_2} \in M$ where $q'' \in Q, s_3 \in S$ with $n' s_3 = (n'' s_1 + q n_1) s_3 \in S$.

Suppose that M is not maximal, say $M \subset M_1$ for some maximal ideal M_1 of N_S . Let $\frac{a}{s} \in M_1$ where $a \notin Q$, $s \in S$. Now $\frac{a}{s} \frac{s}{a} = \frac{as_1}{as_1}$ where $s_1 \in S$ fulfills $as_1 = ss_1 \in S$. Then $M_1 = N_S$, a contradiction. Hence M is a unique maximal ideal in a near-ring of right quotients of N with respect to S.

References

- G. F. Birkenmeier, H. E. Heatherly and E. K. Lee, Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Denison Conference, 1992, edited by S. K. Jain and S. T. Rizvi, World Scientific, Singapore, 1993, 102-129.
- [2] I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, 1966.
- [3] G. Pilz, Near-rings, North-Holland, Amsterdam, 1983.