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Abstract

In this paper we introduce the notion of prime ideal of an N -group I'. We obtain some
results for a prime ideal of an N -group T'. Also we show that if @ is a completely
prime ideal of N and S is a complement of @ in N then M = {%|g € Q and s ¢ Q}

is a unique maximal ideal in a near-ring of right quotients of N with respect to S.

Key words: prime ideal, maximal ideal, N -group.
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1 Introduction

Throughout this paper N denotes a zero-symmetric near-ring with identity and T’
denotes an N -group. If N has a unit element 1, and if 1.y =~ for every element
v €I, then I' is called a unital N -group. In this paper, we assume that all N -groups
are unital. So far only ideal is defined in a N -group I'. In this paper we introduce the
notion of prime ideal of an N -group I'. We obtain some results for a prime ideal of
an N -group I' and maximal ideal of right quotients.
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2 Preliminaries
In this section, we recall the definitions needed for our purpose.

Definition 2.1 An ideal P of N s called completely prime if for any a,b € N,
ab € P implies either a € P or b€ P.

Definition 2.2 An ideal @ of N s called completely semiprime if for any a € N,
a? € Q implies a € Q.

Remark 2.3

1. If P is a completely prime ideal of N, then P is a prime ideal of N.

2. If Q is a completely semiprime ideal of N, then @ is a semiprime ideal of N.

Lemma 2.4 Let I be a completely semiprime ideal of N. Then for any a,b € N, ab &
I implies ba € I and aNb C I.

Proof. Assume that ab € I for any a,b € N. Now (ba)? = b(ab)a € I. Since I
is completely semiprime, we have ba € I. Let n € N. Now (anb)? = an(ba)nb € I.
Since I is completely semiprime, anb € I. Hence aNb C I, -]

3 Main Results

In this section, we obtain some results for a prime ideal of an N -group I' and maximal
ideal of right quotients.

Definition 3.1 An ideal P of I' is said to be prime if P # ' and whenever ny € P
(where ne N and v€T' ) then ne (P :T) or v € P.

If P is prime, then the ideal p= (P : I') is a prime ideal of N, and P is said to
be p-prime.

Lemma 3.2 If P is a prime ideal of I, then (P :T) is a completely semiprime ideal
of N.

Proof. Assume that P is a prime ideal of I'. Suppose that @ € N such that
a2 € (P:T). Let ¥ € T. Then a(ay) € P. Since P is a prime ideal of T', we
have a € (P : ') or ay € P for all v € I'. Thus, in any case, a € (P : I'). Hence
(P :TI') is a completely semiprime ideal of N. B
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Lemma 3.3 If P is a prime ideal of I', then (P :1') s a completely prime ideal of
N.

Proof. Assume that P is a prime ideal of I'. Let a,b € N such that abe (P : ).
By Lemma 3.2, (P :T') is a completely semiprime ideal of N. Then (a) (b) C (P:T).
Since (P :T) is a prime ideal of N, we have a € (P : T') or b € (P : I'). Hence
(P:T) is a completely prime ideal of N. 8

Hereafter we assume that every N -subgroup is an ideal and n(v; +72) = ny1 +nvy2
forall ne N, vy, €eT.

Theorem 3.4 Let N be a near-ring and I an ideal which is contained in every
mazximal ideal. Then forany 1€ I, 1+1i and i +1 have left inverses.

Proof. Let M be a maximal ideal of N. Let i € I. Suppose N(1 +i) C M. Since
14+ie N(141i), we have 1+i € M. Since —i € M, we have 1 € M, a contradiction.
Hence N(1+i)= N. Since 1€ N(1 +i), we can find x € N such that 1 = z(1 + i).

Similarly i + 1 has left inverse. "

We have the following corollary from Theorem 3.4.

Corollary 3.5 [2] Let R be a commutative ring and I an ideal which is contained in
every maximal ideal. Then for any i € I, 141 is a unit.

Theorem 3.6 Let N be a near-ring and I an ideal which is contained in every

maximal ideal. Let I' be a finitely generated N -group. Suppose that IT' = I', then
[Fe=)

Proof. We use induction on the number of generators. Let ~; be the generator. Since
IT' =T, there exists ¢ € I and ~ € I' such that ~; = #vy. Since ~; is the generator,
we can find n € N such that v = nvy;. Now 541 = iny;. Then (1 + (—in))y; = 0.
By Theorem 3.4, there exists @ € N such that z(1+ (—in)) = 1. Therefore, v = 0.
Assume that the result is true for n—1 generators. Let v1,792,...,7n be the generators.
Since IT' =T, there exists i € I and ~ € I' such that v = i%. Since v1,72,...,n are
the generators, we can find ay.a,...,an € N such that v = a1y + a3y + ... + an .
Now v = ia1m + ia2y2 + ... + iapyn. Thus, (—ia; + 1)y = iagy2 + ... + tapyn. By
Theorem 3.4, there exists € N such that z(—ia; + 1) = 1. Hence I' = 0. n

Notation 3.7 Let S be a subsemigroup of (N,.). A near-ring of right quotients of
N with respect to S is denoted by Ng.

Lemma 3.8 Let N be a near-ring and ) a completely prime ideal of N. Let S be
the complement of Q in N. Then M = {1|qg € Q and s ¢ Q} is a unique maximal
ideal in a near-ring of right quotients of N with respect to S.
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Proof. Let ﬂ?ﬂf eM Now L — 12 _ 18" R M where n3 € N,s3 € 5 fulfills

&1 851 &g LIk
song = 35153 € S. Let £ € Ng and 4 € M. Now $ +4 -3 = %QE — 2 where
n1 € N,s; € S is such that s n] = ss; € 5. Then 2.4 il -2 = {mﬁﬁ:l?_mz where
ng € N,sy € S satisfies sng = 53183 € S. Thus, T + —f; — 2= “”1”1’*‘;’;:::_“””? € M.
Let 2 € Ng and g"; e M. Now f}% = %2—: € M where ny € N,s2 € § with
] Ll f i ] I

gsa = nsy € S. Let % % € Ny and 1 € M. Now e e e 1) — (%2) =
f L (] £ "

n(E3N) — (B.2.) where ny € N,s; € S satisfies sng = s 51 € S. Then
5 5 8 5 8 4 e

(% + 1) = (55) = '_:—r{“—i;':t—:m} - [;-}-,.-'i;} where ¢ € Q,s3 € S is such that

(1 I ' [ i

F f
nsy=n sy €85 Hence S (Fr+3) =5 or) = _;;_fi‘__r-"E; € M where ¢ € Q,s3€ S

5 “1sg 5 &

with n's3 = ('n."sl + gqny)s3 € S,

Suppose that M is not maximal, say M C M, for some maximal ideal M| of Ng.
Let 2 € M} where a ¢ Q, s € 5. Now 22 = 28 where 51 € S fulfills as) =55, € S.

sa 18y

Then M) = Ng. a contradiction. Hence M is a unique maximal ideal in a near-ring
of right quotients of N with respect to S. B
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